Optimization of calibration interval based on equipment metrological history

(a) Brahim Moreno

FOREWORD

- Calibration needed to ensure traceability to the international system of units
- Periodic calibration is a tool to ensure that no significant drift has occurred during the elapsed period
- IMS often required to comply with ISO/IEC 17025
 - Periodic calibration is a tool to ensure that no significant drift has occurred during the elapsed period
- Reference dosemeters expired (fading, natural background...)
 - Cannot be used for an infinite number of time periods
- Need to balance cost, process efficiency and quality

METHOD IMPLEMENTATION AND BASIC PRINCIPLES

STEP 1: DEFINITION OF DRIFT TOLERANCE

- Relative drift tolerance: \(RT_{\text{drift}} \)
- Calibration factor output vs elapsed time
- Measurement system output quantity: \(H_p(d) \)
- Maximum permissible measurement error (VIM 4.26): \(MPME \)

\[
RT_{\text{drift}} = \text{Maximum} \left(\frac{|d| \pm 2\sigma_d}{\sigma_H p(d)} \right)
\]

- Maximum permissible measurement error not standardized for passive individual monitoring.

STEP 2: DRIFT ASSESSMENT

- Single measurement system
 - Calibration factor output vs elapsed time
 - Linear fit (dashed blue line): drift = slope

- Multiple equivalent measurement systems
 - Calibration factor output vs elapsed time for each reader
 - Calibration just before and just after the maintenance (ideal case)
 - Individual drift: measured for each period \(k \) and each reader \(j \) in between two maintenances:
 - Two points: linear interpolation
 - More than 2 points: linear fit
 - Drift: average of the \(d_j \) values
 \[
 \text{Drift} \equiv \text{average of the } d_j \text{ values} = \text{max}(|d| \pm 2\sigma_d)
 \]

STEP 3: CALIBRATION PERIOD ESTIMATE

- Definition of the (expanded) calibration period
 - Calibration just before and after the maintenance
 - \(d_j \) values from the reader calibration history
 - Linear interpolation/linear fit

EXAMPLE OF INLIGHT READERS AR500 FOR \(H_p(10) \)

- Method 2: Control chart
 - Prerequisite:
 - Uncertainty estimate on measured quantity
 - Uncertainty on the calibration
 - System drift measurable
 - Calibration data available

- Relative drift tolerance: \(RT_{\text{drift}} \)
 - Calibration factor output vs elapsed time
 - Measurement system output quantity: \(H_p(d) \)

- Maximum permissible measurement error (VIM 4.26): \(MPME \)

\[
RT_{\text{drift}} = \text{Maximum} \left(\frac{|d| \pm 2\sigma_d}{\sigma_H p(d)} \right)
\]

- Maximum permissible measurement error not standardized for passive individual monitoring.

- Suggestion: use maximum recommended value on equipment metrological history
 - No maintenance or maintenance period large enough to cumulate calibration factor data

- Calibration just before and just after the maintenance (ideal case)
 - Suggested interval is based on intuition

- Individual drift: measured for each period \(k \) and each reader \(j \) in between two maintenances:
 - Two points: linear interpolation
 - More than 2 points: linear fit

- Drift: average of the \(d_j \) values
 \[
 \text{Drift} \equiv \text{average of the } d_j \text{ values} = \text{max}(|d| \pm 2\sigma_d)
 \]

- Method is easy to implement and does not depend on the measurement system
- Results are obtained based on available data
- Justification of calibration period is based on metrology

- Expanded calibration period [m]: 26.9
 - Expanded calibration period [m]: 8.2
 - MPME: 30 %
 - MPME: 16 %

- Tolerated drift \(RT_{\text{drift}} \): 47 % for MPME=30 % (RP 160)
 - Tolerated drift \(RT_{\text{drift}} \): 14 % for MPME=16 %