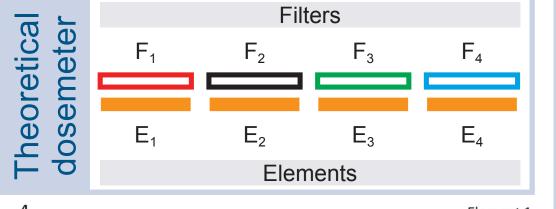
LANDAUER®

Presenting author: Brahim MORENO, Ph.D.


LANDAUER^(a) - Direction Scientifique 33, avenue du général Leclerc 92266 Fontenay-Aux-Roses Cedex - FRANCE Tel.: +33 (0) 1 40 95 62 90 - Fax: +33 (0) 1 40 95 62 89 bmoreno@landauer-fr.com - www.landauer-fr.com

New generation of dose estimation algorithm for multi-element passive dosemeter ^(a)Brahim Moreno, ^(a)Marc Million

STATE-OF-THE-ART

Basic principle of a multi-sensitive element passive dosemeter

Intrinsic sensitive element response modulation

Most common type of personal dose equivalent estimation algorithm

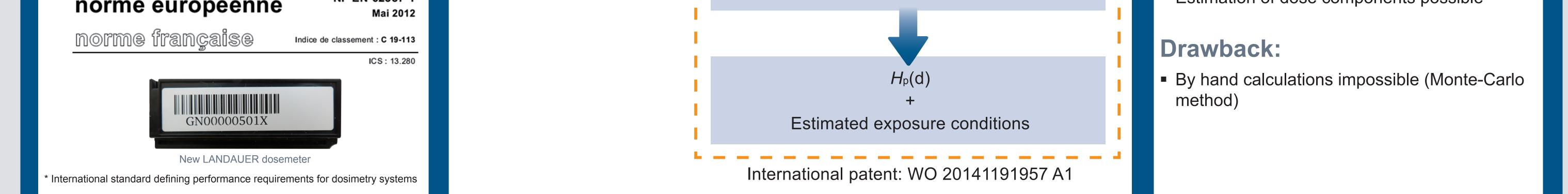
Linear algorithm:

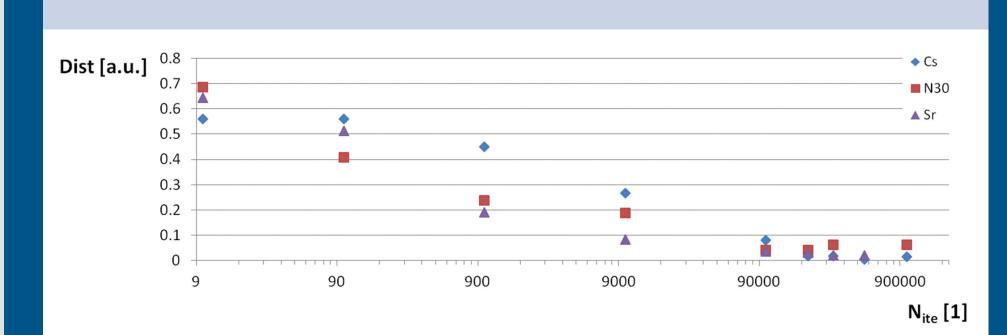

Single linear equation on the whole rated energy-angular range

$$H_p(d) = \sum_{i=1}^N a_i(d) e_i$$

N-number of conditive claments

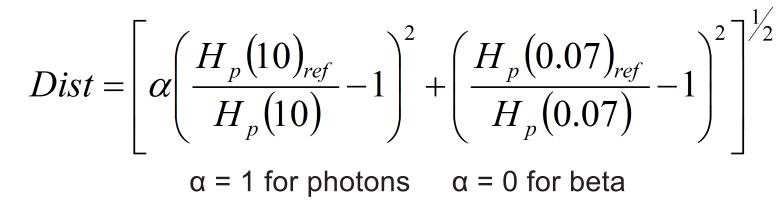
Linear algorithm with decision points:

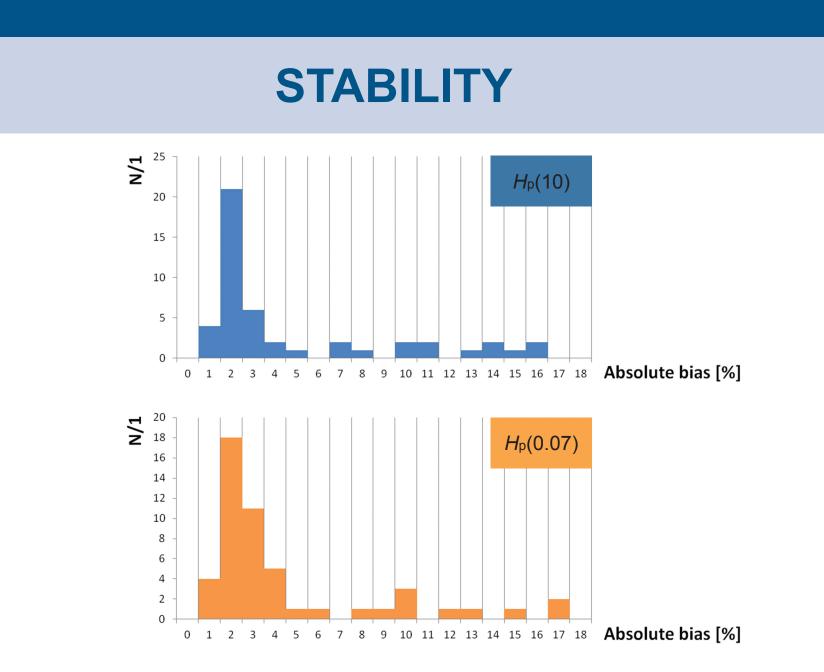

- Multiple linear equations possible
- Choice depending on defined conditions


4 3.5 3 2.5 4 R _{rel} [1] Element 1 Element 2 Element 3 Element 4	Exposure conditions reconstruction possible	N=number of sensitive elements e_i = measurement for the i th sensitive element $a_i(d)$ = coefficient for the i th element and the quantity $H_p(d)$			if (condition 2) $H_p(d) = \sum_{i=1}^N b_i(d) e_i$		
2 1.5			Linear	Linear with decision points		Linear	Linear with decision points
1		Easy to use/understand	X		ODD Dosemeter specific	x	X
0.5 E [MeV]	Personal dose equivalent estimation	Additivity of response Adapted to dosemeter with highly energy dependent sensitive material	X		Optimization required	Х	X
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					May generate instabilities		X

MONTE-CARLO ALGORITHM (MCA)

SPECIFICATIONS	BA	MAIN CHARACTERISTICS		
 Universal algorithm: Shall be useable for all multi-element dosemeters 		Dosemeter sensitive element measurements	Advantages: Improved stability: not a decision - point algorithm 	
 Results provided compliant with EN 62387-1:2012*: Development started for the new LANDAUER dosemeter and compliance with the european 	Dosemeter Response Database (DRD)	Pattern reconstruction with Monte-Carlo based numerical method Iterative process	 Dosemeter independent algorithm: all dosemeter specific information contained in DRD Modular algorithm: possibility to assess dos with different DRD configurations 	
transcription of the standard given above (see poster 03.180) NF EN 62387-1 Mai 2012		Pattern reconstructed on DRD	 Basic spectroscopy (energy/angle, particle type) Estimation of dose components possible 	




PERFORMANCES / STRESS TEST

CONVERGENCE

The quantity Dist is an estimate of the distance between the results $H_p(10)$ and $H_p(0.07)$ given by the algorithm and the reference values $H_p(10)_{ref}$ and $H_p(0.07)_{ref}$:

RESPONSE TO UNKNOWN RADIATION QUALITIES R[1] Hp(0.07) 0.5 Radiation guality

H300 (147 keV, 0°) M30 (0°) W-80 (57 keV, 0°) RQR7 (90 kV, 0°) W-150 (104 keV, 0°

- Ratio R of estimated dose to conventional true value for $H_{\rm p}(10)$ and $H_{\rm p}(0.07)$
- R_{II} and R_{uI} are the lower and upper acceptable limits defined in the IEC 62387-1:2012

- The variable N_{ite} is the number of iterations used to estimate $H_{\rm p}(10)$ and $H_{\rm p}(0.07)$
- The convergence zone starts at N≈1×10⁵

GN case experimental data has been used for this study.

CONCLUSIONS

- Absolute bias calculated between dose estimation for noisy measurements and references
- 10% Gaussian noise (k=2) added randomly to sensitive element measurements
- Radiation qualities considered: photons from 16 keV to 6 MeV, beta (⁸⁵Kr, ⁹⁰Sr/⁹⁰Y); angle of incidence in [-60°;60°]
- Mean bias < 7.7 %</p>

The error bars are statistical only (k=1)

Radiation qualities used are not in the DRD (dosemeter) response database)

• All ratios well inside the standard acceptable limits

- Successfull development of a UNIVERSAL dose estimation algorithm
- Algorithm patented
- Stress tests show: fast convergence, high stability and adaptability of the algorithm
- Algorithm already successfully used for IEC 62387-1:2012 compliance of the new LANDAUER dosemeter (see poster 03.180)