

Development of a multi-sensitive element passive dosemeter based on OSL technology for IEC 62387 compliance

Brahim Moreno, Marc Million, Julien Ranouil, Jérôme Hahang.

LANDAUER EUROPE, Direction scientifique, 33 Avenue du Général Leclerc, 92266 Fontenay-aux-Roses, FRANCE

CONTEXT

Why a new dosemeter?

Evolution of standard for passive dosemetry Transcription: IEC 62387-1:2007 — EN 62387-1:2012

NF EN 62387-1 norme européenne

norme française

Requirements

Metrological requirements

- A least: compliant with the EN 62387-1:2012 standard
- At best: better metrological performances than those required **Design requirements**
- Technology: Optically Stimulated Luminescence (OSL) with aluminum oxide $(AI_2O_3:C)$

Dose range						
	Mandatory dose range	Dose range expected				
$H_{\rm p}(10)$	0.1 mSv to 1 Sv	0.05 mSv to 10 Sv				
$H_{\rm p}(0.07)$	1 mSv to 3 Sv	0.05 mSv to 10 Sv				

Energy Range						
	Mandatory energy range	Energy range expected				
	(average energies)	(average energies)				
Beta						
$H_{\rm p}(0.07)$	0.8 MeV	0.2 MeV to 0.8 MeV				
Photons						
$H_{\rm p}(10)$	80 keV to 1.25 MeV	16 keV to 6 MeV				
$H_{\rm p}(0.07)$	30 keV to 250 keV	16 keV to 1.25 MeV				

Indice de classement : C 19-113

ICS: 13.280

ST

STEP

2ND

E [MeV]

Mai 2012

- Will to improve range of compliance
- Standard evolution anticipated: start of the new dosemeter development in 2011
- Number of sensitive elements: 4
- Dosemeter readable on existing readers
- No modification of the external appearance

DEVELOPMENT

Dosemeter developed by using Monte-Carlo technique

Basic principle of a multi-sensitive element passive dosemeter

Sensitive material response modulation by using filters

Theoretical dosemeter

Monte-Carlo

development

- Incident beam quality reconstruction by using pattern recognition
- Dose equivalent estimation

Numerous optimization and testing parameters

Geometrical modelling and validation

Acceptable agreement between MC and experimental data

Filter material

- Filter geometry
- Filter positionning
- Beam quality

Steps

- 1st Sensitive elements modelling
- 2nd Geometrical modelling of the dosemeter and validation of the modelling on the InLight dosemeter with XA case
- 3rd Optimization of the new GN case

	New d						
	Material	Thickness [g/cm ²]	Filter 1	Filter 2	Filter 3	Filter 4	
ТЕР	Polyester	0.063	0.063				
	Plastic (ABS)	1.325		1.325			
RD S	Plastic (ABS)	0.901			0.901	0.901	
m	Aluminum	0.404		0.404	0.404	0.404	
	Titanium	1.804			1.804		
	Tin	2.578				2.578	
		Total thickness [g/cm ²]	0.063	1.729	3.109	3.882	New

Filters closer to sensitive elements for better angular response

Er

nlargement of the open window for better energyangle response at low energies and large angles

RESULTS

CONCLUSION

Dosemeter declared compliant with EN 62387-1:2012 for photon and beta radiations on the following range by LNHB:

- Dose range: 0.05 mSv to 10 Sv for $H_p(10)$ and $H_p(0.07)$
- Photons: mean energies from 16 keV to 6 MeV angle from -60° to 60° H/V
- mean energies 0.2 MeV to 0.8 MeV (⁸⁵Kr and ⁹⁰Sr/⁹⁰Y) Beta: angle -45° to 45° H/V

Dosemeter with high metrological performances

- Non-linearity below 5% over 6 decades
- Photon energy dependency better than 11% over three decades
- Photon angle dependency better than 13% (except one point at 19%)
- Beta energy-angle dependency better than 14% (except one point at 33%)

Presenting author: Brahim MORENO - bmoreno@landauer-fr.com